
Numerical coefficients of 0.91 and 0.95 were. obtained in analogous expressions in [i, 2[ 

respectively, with allowance for the pressure actually acting on the diaphragm. The model ol 
a freely linked chain gives a value ~1.5 times lower for the time of complete opening than 
the "hinge" model. 

The relative value of the through cross section at different stages of the process of 
opening of the diaphragm calculated for the "hinge" model and the freely linked chain is 
shown in Fig. 3 { i) model of "hinge" opening; 2) inelastic opening; 3) experimental depen- 
dence for a thick copper diaphragm; 4) experiment of [3]}. 
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TRANSIENT HEAT--MASS EXCHANGE NEAR A SPHERICAL PARTICLE 

R. I. Nigmatulin and I. Kh. Rakhmatulina UDC 532.529.6 

i. Statement of the Problem and the Basic Equations 

The spherically symmetric problem is discussed in which phase transitions occur only on 
the surface of a particle, and the mass velocities which arise in the gas are many times 
smaller than the-speed of sound. In this case it makes sense to use the condition of pres- 
sure uniformity over space (appropriate justification occurs in [I]). The gas which sur- 
rounds the drop or particle is a single-component gas and is the vapor of the material of the 
drop or particle (there is no diffusion in the system). Let the particle be incompressible, 
motion be absent in it, but thermal conductivity occur. We will assume the gas or vapor to 
be a perfect gas. The system of equations which describes this process has the form 

r > r6, p = p(t) ,  p = p B T ;  

oo ~ ~ (r2pv)=O;  
at -~+ 7 a-7 

aeVr l 0 ( oT) ~ p o (r2v); 
P ot = 7 7 r  re~'l"~'r - - p v  ~r r ~ Or 

O c , T t (  01" ) 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

where p is the density, T is the temperature, p is the pressure, v is the velocity, R is the 
gas constant, ~ is the thermal conductivity coefficient, r is the radius, and t is the time. 
The subscripts I and 2 correspond to the values of the parameters in the vapor and in the 
particle, and the subscript a corresponds to values on the surface of the particle. 

The first: of Eqs. (I.I) is the pressure uniformity condition over space, which is a cor- 
ollary of the momentum equation upon neglect of inertial forces, (1.2) is the continuity equa- 
tion in the gaseous phase, and (1.3) and (1.4) are the heat flux equations in the vapor and 
the particle, respectively. 
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It is possible to derive the relation 

?p a (r~v) = 7 - - 1  a (r.~. aT ) dp 
r s Or r ~- Or T r  dt 

(1.5) 

from (i.i)-(1.3). Having integrated (1.5) along the coordinate with account taken of the 
fact that p and dp/dt are functions only of the time, we obtain 

v = r-~:' ~'~'~ ~ ~ ~ ar ~.~/q~, ~ ~,, 3r~-~,p dr" ( 1 . 6 )  

Thus within the framework of a model uniform with respect to the pressure the velocity dis- 
tribution in the vapor is uniquely specified at each instant of time by the temperature dis- 
tribution in it and by the values of the velocities at the two radii. One of the velocity 
values can be taken at the surface of the particle, and the other value determines dp/dt. 

Let us select 

t = 0 ,  r > r a o ,  T = Tlo, p = p o ,  r < r z o ,  T = T.oo (1.7) 

as the initial conditions, where the subscript 0 corresponds to the initial state of the sys, 
tem. 

The boundary conditions on the surface of a particle or drop are of the form 

r = r o ,  p l = ( v l z  - -  d r g / d t )  = 7, ] = - -O- , . (dra/dt ) ,  

x.,,~(aTlar).2a = X ~ o ( a r / a r h r  - -  l], T ~  = T.,.a = T s  (P),  
(1,8) 

where j is the intensity of the phase transitions referred to unit surface and time and Z is 
the heat of vaporization; the last of the conditions (1.8) is the phase equilibrium condition 
onthe surface of the particle. This equilibrium may be absent in the entire remaining vol- 
ume [T # TS(p) ]. In the case of very rapid explosive processes phase equilibrium may not be 
fulfilled on the surface of the particle when the phase transitions on it do not have time to 
follow the variation of the pressure. In this case it is necessary to include the kinetic 
relation 

] F [ T I r  - -  " N T s t p )  I. (1.9) 

When F + = the finiteness of j is ensured in the case of the equilibrium conditions T~o § 
TS(p) adopted in (1.8). 

If there are no phase transitions on the interphase surface, the boundgry conditions on 
it are simplified t o  

r = r  a . v l ~ = 0 , ~ , l r  Tr le=~'2~ ~ , T I ~ = T ~ g .  

One should specify the other boundary condition on the outer boundary of the system (in 
the vapor) Let us consider the case in which the particle is placed at the center of a 
spherical volume of radius r c filled with vapor with the boundary conditions cited below and 
the equation for the rate of pressure variation which follows from them: 

aT 
r~--mrr r = 0 ,  pv = 0, 

dp = ~ L  vpv1~- (v _ I)~i ~ ~ 
dt r e - -  r~ 

(I.IQ) 
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These conditions correspond to a uniform "cell" model of a dispersed mixture, according 
to which a spherical volume of radius r c concentric with the particle corresponds to each 
particle of radius r~o. The cell radius r c is determined either by the number of particles 
per unit vol~me of the mixture n, or by the volume content of particles in the system ~a, or 
the mass vapor content xx: 

7o0) P~0 3 ro~) 

1~ = /i;tr---~e~ ~ 0L z = :  " - 7 ,  ;r 1 = (4 4 )  -: , ,o" -- ~O!0 ~ FCTO~ 2 

It is assumed that the disturbances introduced into the vapor by each particle are lo- 
calized inside the cell corresponding to it. If one assumes the absence of a variation of 
the volume and the energy of the entire mixture, the identical nature of all the particles 
and the cells corresponding to them, as well as the absence of mass and energy exchange among 
them, then we obtain the conditions (I.I0) on the boundaries of the cells. If the cell radi- 
us tends to infinity (r e § =, da + 0) and we maintain constant parameters on the external 
boundary, then the pressure in the vapor will be constant and 

r e = c0, T(t) = To, p(t) = Po. (1.11) 

The boundary conditions (I.ii) correspond to the case in which a single particle is placed 
in an infinite volume and mass of vapor. 

Thus, the problem reduces to the solution of the system of equations (i.I), (i.3), (1.4), 
and (1.6) with the boundary conditions (1.8), (i.I0), or (i. II) and the initial conditions 
(1.7). The system is closed by the specification of the functions l~, Cv, ka, and ca. Since 
these functions vary little in the temperature intervals under discussion, we will assume 
that X~ is a linear function of the temperature and X~, Cv, and ca are constants. 

Let us introduce the following dimensionless parameters: 

= r/roo, ~o = rz,:'roo, �9 = • U = r~ov/• , 

P = P/Po, @~o = T . T l o ,  0 = T/Tlo,  Os = Ts/Tlo,  

/5 := P,'ho, L = l/cpTlo, 6 2 = O~/Pl0, d = --Sf l~o/ 'dr ,  

A 1  = }q ' ) ' q0 ,  A 2  = )- .J) , lo  ( x l o  = ~,lo/P!ocl), •  = ),~..:P:~c.2), 

where ~ x o  and[ ~2 are the thermal-conductivity coefficients of the gas and the particle. 

The system of equations, along with the initial and boundary conditions, will take the 
form 

~. > ~a, P(T) = 5 0 ,  

oo , o (o ao) ao , , ,- ,dP 

[ ~ g~ , , t O0 g~ O0 
U = - - ~ . , t t o - : - - -  F A1---~ - -  T_, Aio ---- 

b to" o( ) aO x2 ~" a~ ~ O0 

= O, 0 1 =  t .  O ~ =  O-~o, P = P o =  1; 

= O. ao/o~  = 0; 

i' a~ 1 6!o~U~o- -  -~--1 = J ,  O~o ==0~o = O s ( P ) ,  

oo , o ( o o ~  = A,o(__~ ) , o _  L j ;  
" "k o~ ]2o 

% = L, a o / a ~  = o, 8 u  = o,  

()] dP g{j'i O0 
a T =  i g - - 1 3  P U l o - - A l o  ~ i o "  

dT 

d_~P. 
3~2"~P dr ' 

(1.12) 

(z.n) 

(i.14) 

(i.15) 

(i.16) 

(1./17) 

in the new dimensionless variables. 
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The boundary conditions (i.16) are specified on the surface of the particle, whose radi- 
us to(t) or to(t) in the presence of phase transitions varies in time and should be deter- 
mined in the course of the solution. 

The condition (1.17) should replace the condition 

~ = co, O =  1, P = 1 ( i .  17a) 

for the case of an infinite cell. 

In this connection a replacement of the variable $ by ~ = i/$ was carried out in Eqs. 
(1.12) for the reduction of the infinite integration region to < ~ < = to a finite one. 

As is evident from the system of equations (1.12) and (1.13) and the initial and bound- 
ary conditions (1.14)-(1.16) and (l.17a), the initial radius of the particle does not con- 
tribute to the n~mber of controlling parameters for the case $c = =" Due to this fact the 
dimensionless solution will be self-similar, i.e., identical for all particle sizes. This 
situation is associated, in particular, with the fact that the condition of phase equilibri- 
um on the interphase surface T o = TS(p) was used in the statement of the problem. If one 
takes account of the nonequilibrium kinetics of phase transitions, assuming T o # TS(p), then 
the initial radius of the particle and the characteristic time of the kinetics of nonequi- 
librium phase transitions (1.9) determined by the quantity F will enter into the number of 
controlling parameters. 

The calculation was carried out on a computer according to an implicit scheme of first- 
order accuracy for the system of a drop of water in water vapor with the appropriate thermo- 
physical parameters [2]. 

2. Time-Independent Solution 

The case in which a spherical particle is placed in an infinite volume of vapor (~c = | 
is discussed. Its radius, regardless of phase transitions, does not vary. The temperature 
inside the particle is held uniform and constant, and the parameters at infinity are also 
kept constant. One can consider the time-independent solution of the formulated problem as 
the limit of the transient problem as x ~ ~ and with the boundary conditions preserved. The 
processes taking place in the vapor are described by the system of equations (1.12), which 
can, setting all time derivatives equal to zero, be reduced to a single equation in @, name- 

ly, 

( ~dO )2 

d O  U ~. - -  d~ 

( I - -~ ) (dO~  dO O ~ I ) 
~- ~ ] ~ d ~  ~ - ~ -  = 0 ,  

0 (1) = Os, @ (cr --= 1. 

As a result of integration we obtain 

[ .  --d,/~ 0 = ta~.e - -  ~ ) /d l ,  U = d~(9/~ 2, 

' - ~  1, d,: d~ (' i I - ~ ) 1 ,  = ( 2 . 1 )  

(dO,'d~)~o = d ~ O s  e .  ~ - -  ( l  - -  s)(dO/d~)~,~. 

In the absence of phase transitions, when the solution is obtained for I = ~ and ~ -- 0, we 

have 

o =  l - - ( l  %)/~, u - 0 .  

In t h e  time-independent problem under discussion the dimensionless heat flow at the sur- 
face of the particle (the Nusselt number) has the form 
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S u , t  - 2 l a  [ i  -F S( i  - -  OS), 'OS] s ( i  - -  O s ) / O s .  (2.2) 

As a rule, e = cpTs/Z ~i; therefore, one can simplify Eq. (2.2) as follows: 

Nu~t :~ 2 - -  c~(Tzo - -  Ts),[.  

The limiting or time-independent Nusselt number is equal to 2 in the absence of phase transi- 
tions (Z = o,) on the surface of the particle. In the opposite case, in which evaporation or 
blowing-in occurs (T,o > TS), Nust < 2, and when condensation or suction occurs (T~o < TS), 
Nust > 2 on the surface of a sphere of constant radius. 

The characteristic variation time of the particle size, 

2 3, t~ = 2p2orool/3L1 o Nust T ,  

is much larger than the characteristic time of temperature equalization in the gaseous phase, 
t~ = r~/~x (tz/to = i0-~). Therefore, one can consider the temperature distribution (2.1), 
which is obtained on the assumption that the particle radius does not vary, as the one cor- 
responding to the instantaneous radius to(t). 

Thus tlhe solution (2.1) describes in practice the quasi-time-independent behavior of the 
system upon a variation of the particle radius occurring due to evaporation or condensation. 
The law of boundary movement is determined by the relation 

dry'dr = ) . loN%t(Tzo-  Ts) /2r .p f l .  

An analogous relation is cited in [3]. 

3. Results of the Solution 

Alternatives were calculated with different initial temperature differentials in the 
phases and different ratios of the initial radius of the particle to the cell radius. Cases 
with zero intensity of the phase transitions were considered to illustrate the effect of 
phase transitions. 

Three temperature conditions are discussed in the case of an initial pressure po = 1 bar 
TS0 = 373~ and two values of the mass vapor content x~ = 1 (a= = 0) and x: = 0.i (~a = 0.8" 
10-2): 

I 

I I  

I I I  

Tlo = 473 K, T~o = 353 K; 

T~o= 373 K, T~0 = 293 K; 

T10 = 473 K ,  T~_o = 378 K. 
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The results of the solution for the conditions I in the case of xl = 1 are presented in 

Figs. 1 and 2. Cu~es 1-4 (Fig. I) represent the temperature distributions (solid lines) 
and velocity distributions (dashed lines), respectively, at the instants of t~e ~ = 0.01, 
0.05, i0, and =. The pressure and temperature of the surface of the particle determined by 
the condition of phase equilibrium are kept constant. As T § = the temperature and velocity 
curves tend to limiting or to quasi-time-indeoendent configurations (2.1) in which the lin- 
ear scale is determined by the instant~eous particle size ro(t) and Nu + Nust. The l~iting 
temperature distribution in the gaseous phase is attained by an instant T + I0. A unifo~ 
distribution is established later in the particle at T > 10K:o/~= on account of the fact that 
K~o > ~2. Be temperature and velocity distributions are monotonic at each instant of time. 
In the absence of phase transitions the velocity has an extremum, which is shifted away from 
the particle as the t~e increases. The variation of the Nusselt n~mber (the d~enslonless 
heat flow into the particle) and of the dimensionless phase transition rate W = J/~= is sho~ 
in Fig. 2. Complete evaporation of the particle occurs in the case under discussion, but 
condensation of vapor precedes it at first. This circumstance is associated with the fact 
that at times t<< r~o/~= only a narrow layer in the particle at its surface is heated up. 
This situation results in the appearance of large temperature gradients in the particle, so 
that LJ = A~o(~O/~)~ o -- A=(~O/~)= o < 0. At T > 40 the temperature distribution inside the 
particle becomes more mildly sloping, a~ condensation is replaced by evaporation. 

In cases ~ which the particle is placed in a finite volume of vapor the solution is 
significantly altered. The main difference consists of the fact that the pressure in the 
vapor varies with t~e. In the presence of phase transitions the surface temperature also 
varies in agreement with the equilibri~ condition T o = TS(P). The variations of the d~en- 
sionless temperature, pressure, and intensity of the phase transitions for conditions II in 
the case of x: = 0.I (~2 = 0.8 �9 i0 -2) are shown in Figs. 3 and 4. Condensation of the va- 
por results in an expansion of the remaining mass of vapor, due to which there occurs a sig- 
nificant cooling of it, which cannot at first be compensated by the heat liberated upon con- 
densation (Fig. 3, in which cu~es 1-4 correspond to the instants of t~e r = 0.5, i0, 20, 
and =). Be temperature on the cell boundary drops down to 269~ (Fig. 4). Subsequently, 
the heat liberated upon co~ensation heats up the vapor. The temperatures of the particle 
and the vapor are equalized as T § =, and the process is as~ptotically discontinued. The 
temperature and velocity distributions at each instant of time are monotonic. In this case 
a significant pressure decrease (by approximately a factor of five) is obtained during a time 
of the order of r~o/~o (see Fig. 4), which indicates the effectiveness of even a small (with 
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respect to volume) injection of cold drops into the vapor in the case of an emergency pres- 

sure increase. 

In the absence of phase transitions the vapor pressure also decreases when x: < i and 
T~o > Tao, but just because of its cooling due to thermal conductivity. 

The solution for the conditions III in the case of x~ = 0.i (aa = 0.8 | i0 -=) is pre- 
sented in Figs. 5 and 6. Evaporation of the particle occurs in the system. The temperature 
curves 1-5 in Fig. 5 correspond to the instants of time T = 0.01, 2, 15, 50, and ~. The 
pressure in the system increases from po = 1 to p = 1.03 bar and then decreases to p = 0.98 
bar. This decrease in the pressure is associated with the fact that phase transition is 
practically discontinued but heat exchange still occurs (see Fig. 6). We note that when x:< 
i condensation is not always replaced by evaporation under conditions I. 

The particle size varied little in all the alternatives discussed. In the case x: = i 
(infinite volume of vapor) this circumstance is associated with the fact that the calcula- 
tions were performed prior to the emergence into quasi-time-independent conditions. One can 
use the time-independent solution (2.1) to describe the subsequent behavior of the system, as 
has already been pointed out. 

In the "cell" formulation the small variation of the radius prior to the instant of es- 
tablishment of equilibrium is due to the fact that alternatives with a small vapor mass con- 
tent in the cell, x~ = 0.I, were discussed. 
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DYNAMICS OF A CYLINDRICAL CAVITY IN A COMPRESSIBLE LIQUID 

V. K. Kedrinskii and V. T. Kuzavov UDC 532.5.013.2+534.222.2 

The equation of one-dimensional pulsation of a cylindrical cavity in a compressible liq- 
uid was derived in [i, 2] within the framework of the approximate theory of Kirkwood--Bethe 
[3], which is based on the approximation by the function G = r~/a~ of an invariant propagat- 
ing along a characteristic at a velocity c + u, where ~ = m + u2/2 is the kinetic enthalpy, 

=~ dp/p is the enthalpy, u is the velocity of a fluid particle, r is the coordinate~ and 

c is the local speed of sound. 

In the derivation of this equation 

0 [ r t l  2 (o) § g~/2)] = - -  (C ~- ~) 
Ot 

(I) 

the condition for G was used, as well as the continuity and momentum conservation equations, 
on the basis of which the replacement of partial derivatives by total ones was made in (i) 
[2]. The pulsation equation of the cavity is derived in the following form (we set r = R, 
u = dR/dr) : 

R [ l  - -  (dR/dt)/c]d~R/dt 2 + (3 /4 ) (dR/d t )  2 [1 - -  (dR/dt)/3c] = 

= ~ [ 1  + (dR/dt)/c]/2 + R ( d ~ / d t ) [ t - -  (dR/dt)/c]/c, ( 2 )  
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